수행기록퀘스트2
참 어렵네요.....
Analyzing model
C:/Users/kjh14/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/7.2.0/Utilities/windows/stm32ai analyze --name network -m C:/Users/kjh14/Desktop/STM32cubeMX.AI/STM32_Quest_AI_Milli_2022/HAR/results/2022_Aug_09_23_46_05/har_IGN.h5 --type keras --compression none --verbosity 1 --workspace C:\Users\kjh14\AppData\Local\Temp\mxAI_workspace5494684707150012727319829777482021 --output C:\Users\kjh14\.stm32cubemx\network_output --allocate-inputs --allocate-outputs
Neural Network Tools for STM32AI v1.6.0 (STM.ai v7.2.0-RC5)
Exec/report summary (analyze)
------------------------------------------------------------------------------------------------------------------------
model file : C:\Users\kjh14\Desktop\STM32cubeMX.AI\STM32_Quest_AI_Milli_2022\HAR\results\2022_Aug_09_23_46_05\har_IGN.h5
type : keras
c_name : network
compression : none
allocator strategy : ['allocate-inputs', 'allocate-outputs']
workspace dir : C:\Users\kjh14\AppData\Local\Temp\mxAI_workspace5494684707150012727319829777482021
output dir : C:\Users\kjh14\.stm32cubemx\network_output
model_name : har_IGN
model_hash : bc22c207ac4187c769cf17ddb0da61e1
input 1/1 : 'input_0'
72 items, 288 B, ai_float, float, (1,24,3,1), domain:activations/**default**
output 1/1 : 'dense_2'
4 items, 16 B, ai_float, float, (1,1,1,4), domain:activations/**default**
params # : 3,064 items (11.97 KiB)
macc : 14,404
weights (ro) : 12,256 B (11.97 KiB) (1 segment)
activations (rw) : 2,016 B (1.97 KiB) (1 segment) *
ram (total) : 2,016 B (1.97 KiB) = 2,016 + 0 + 0
(*) input/output buffers can be used from the activations buffer
Model name - har_IGN ['input_0'] ['dense_2']
------------------------------------------------------------------------------------------------------
id layer (original) oshape param/size macc connected to
------------------------------------------------------------------------------------------------------
0 input_0 (None) [b:None,h:24,w:3,c:1]
conv2d_1_conv2d (Conv2D) [b:None,h:9,w:3,c:24] 408/1,632 10,392 input_0
conv2d_1 (Conv2D) [b:None,h:9,w:3,c:24] 648 conv2d_1_conv2d
------------------------------------------------------------------------------------------------------
1 max_pooling2d_1 (MaxPooling2D) [b:None,h:3,w:3,c:24] 648 conv2d_1
------------------------------------------------------------------------------------------------------
2 flatten_1 (Flatten) [b:None,c:216] max_pooling2d_1
------------------------------------------------------------------------------------------------------
3 dense_1_dense (Dense) [b:None,c:12] 2,604/10,416 2,604 flatten_1
------------------------------------------------------------------------------------------------------
5 dense_2_dense (Dense) [b:None,c:4] 52/208 52 dense_1_dense
dense_2 (Dense) [b:None,c:4] 60 dense_2_dense
------------------------------------------------------------------------------------------------------
model/c-model: macc=14,404/14,404 weights=12,256/12,256 activations=--/2,016 io=--/0
Number of operations per c-layer
-----------------------------------------------------------------------------------
c_id m_id name (type) #op (type)
-----------------------------------------------------------------------------------
0 1 conv2d_1_conv2d (optimized_conv2d) 11,688 (smul_f32_f32)
1 3 dense_1_dense (dense) 2,604 (smul_f32_f32)
2 5 dense_2_dense (dense) 52 (smul_f32_f32)
3 5 dense_2 (nl) 60 (op_f32_f32)
-----------------------------------------------------------------------------------
total 14,404
Number of operation types
---------------------------------------------
smul_f32_f32 14,344 99.6%
op_f32_f32 60 0.4%
Complexity report (model)
------------------------------------------------------------------------------------
m_id name c_macc c_rom c_id
------------------------------------------------------------------------------------
1 max_pooling2d_1 |||||||||||||||| 81.1% ||| 13.3% [0]
3 dense_1_dense |||| 18.1% |||||||||||||||| 85.0% [1]
5 dense_2_dense | 0.8% | 1.7% [2, 3]
------------------------------------------------------------------------------------
macc=14,404 weights=12,256 act=2,016 ram_io=0
Creating txt report file C:\Users\kjh14\.stm32cubemx\network_output\network_analyze_report.txt
elapsed time (analyze): 2.309s
Getting Flash and Ram size used by the library
Model file: har_IGN.h5
Total Flash: 29984 B (29.28 KiB)
Weights: 12256 B (11.97 KiB)
Library: 17728 B (17.31 KiB)
Total Ram: 4000 B (3.91 KiB)
Activations: 2016 B (1.97 KiB)
Library: 1984 B (1.94 KiB)
Input: 288 B (included in Activations)
Output: 16 B (included in Activations)
Done
Analyze complete on AI model
- 첨부파일
- Neural Network Model.txt 다운로드
로그인 후
참가 상태를 확인할 수 있습니다.