수행기록퀘스트2
1. Accuracy 캡처
2. Model Loss Function 캡처
3. Confusion Matrix 캡처
4. netwrok_analyze_report
Neural Network Tools for STM32AI v1.6.0 (STM.ai v7.1.0-RC3)
Created date : 2022-08-10 11:12:20
Parameters : analyze --name network -m C:/Users/Leniven_HW/PycharmProjects/STM32_Quest_AI_GIGECAP_2022/HAR/results/2022_Aug_10_10_27_05/har_IGN.h5 --type keras --compression 1 --verbosity 1 --workspace C:\Users\LENIVE~1\AppData\Local\Temp\mxAI_workspace15824329646230011944412612009690500 --output C:\Users\Leniven_HW\.stm32cubemx\network_output
Exec/report summary (analyze)
------------------------------------------------------------------------------------------------------------------------
model file : C:\Users\Leniven_HW\PycharmProjects\STM32_Quest_AI_GIGECAP_2022\HAR\results\2022_Aug_10_10_27_05\har_IGN.h5
type : keras
c_name : network
compression : None
workspace dir : C:\Users\LENIVE~1\AppData\Local\Temp\mxAI_workspace15824329646230011944412612009690500
output dir : C:\Users\Leniven_HW\.stm32cubemx\network_output
model_name : har_IGN
model_hash : 85e072a41dbcb6be927255cf329473ae
input 1/1 : 'input_0'
72 items, 288 B, ai_float, float, (1,24,3,1), domain:user/
output 1/1 : 'dense_1'
4 items, 16 B, ai_float, float, (1,1,1,4), domain:user/
params # : 3,064 items (11.97 KiB)
macc : 14,404
weights (ro) : 12,256 B (11.97 KiB) (1 segment)
activations (rw) : 1,728 B (1.69 KiB) (1 segment)
ram (total) : 2,032 B (1.98 KiB) = 1,728 + 288 + 16
Model name - har_IGN ['input_0'] ['dense_1']
-------------------------------------------------------------------------------------------------------------------------------------------
id layer (type) oshape param/size macc connected to | c_size c_macc c_type
-------------------------------------------------------------------------------------------------------------------------------------------
0 input_0 (Input) (None,24,3,1) |
conv2d_conv2d (Conv2D) (None,9,3,24) 408/1,632 10,392 input_0 | +1,296(+12.5%) optimized_conv2d()[0]
conv2d (Nonlinearity) (None,9,3,24) 648 conv2d_conv2d | -648(-100.0%)
-------------------------------------------------------------------------------------------------------------------------------------------
1 max_pooling2d (Pool) (None,3,3,24) 648 conv2d | -648(-100.0%)
-------------------------------------------------------------------------------------------------------------------------------------------
2 flatten (Reshape) (None,1,1,216) max_pooling2d |
-------------------------------------------------------------------------------------------------------------------------------------------
3 dense_dense (Dense) (None,1,1,12) 2,604/10,416 2,604 flatten | dense()[1]
-------------------------------------------------------------------------------------------------------------------------------------------
5 dense_1_dense (Dense) (None,1,1,4) 52/208 52 dense_dense | dense()[2]
dense_1 (Nonlinearity) (None,1,1,4) 60 dense_1_dense | nl()/o[3]
-------------------------------------------------------------------------------------------------------------------------------------------
model/c-model: macc=14,404/14,404 weights=12,256/12,256 activations=--/1,728 io=--/304
Generated C-graph summary
------------------------------------------------------------------------------------------------------------------------
model name : har_ign
c-name : network
c-node # : 4
c-array # : 12
activations size : 1728 (1 segments)
weights size : 12256 (1 segments)
macc : 14404
inputs : ['input_0_output']
outputs : ['dense_1_output']
C-Arrays (12)
-----------------------------------------------------------------------------------------------------
c_id name (*_array) item/size domain/mem-pool c-type fmt comment
-----------------------------------------------------------------------------------------------------
0 input_0_output 72/288 user/ float float /input
1 conv2d_conv2d_output 216/864 activations/**default** float float
2 dense_dense_output 12/48 activations/**default** float float
3 dense_1_dense_output 4/16 activations/**default** float float
4 dense_1_output 4/16 user/ float float /output
5 conv2d_conv2d_weights 384/1536 weights/ const float float
6 conv2d_conv2d_bias 24/96 weights/ const float float
7 dense_dense_weights 2592/10368 weights/ const float float
8 dense_dense_bias 12/48 weights/ const float float
9 dense_1_dense_weights 48/192 weights/ const float float
10 dense_1_dense_bias 4/16 weights/ const float float
11 conv2d_conv2d_scratch0 216/864 activations/**default** float float
-----------------------------------------------------------------------------------------------------
C-Layers (4)
-------------------------------------------------------------------------------------------------------------
c_id name (*_layer) id layer_type macc rom tensors shape (array id)
-------------------------------------------------------------------------------------------------------------
0 conv2d_conv2d 1 optimized_conv2d 11688 1632 I: input_0_output (1,24,3,1) (0)
S: conv2d_conv2d_scratch0
W: conv2d_conv2d_weights (1,24,16,1) (5)
W: conv2d_conv2d_bias (1,1,1,24) (6)
O: conv2d_conv2d_output (1,3,3,24) (1)
-------------------------------------------------------------------------------------------------------------
1 dense_dense 3 dense 2604 10416 I: conv2d_conv2d_output0 (1,1,1,216) (1)
W: dense_dense_weights (216,1,1,12) (7)
W: dense_dense_bias (1,1,1,12) (8)
O: dense_dense_output (1,1,1,12) (2)
-------------------------------------------------------------------------------------------------------------
2 dense_1_dense 5 dense 52 208 I: dense_dense_output (1,1,1,12) (2)
W: dense_1_dense_weights (12,1,1,4) (9)
W: dense_1_dense_bias (1,1,1,4) (10)
O: dense_1_dense_output (1,1,1,4) (3)
-------------------------------------------------------------------------------------------------------------
3 dense_1 5 nl 60 0 I: dense_1_dense_output (1,1,1,4) (3)
O: dense_1_output (1,1,1,4) (4)
-------------------------------------------------------------------------------------------------------------
Complexity report per layer - macc=14,404 weights=12,256 act=1,728 ram_io=304
------------------------------------------------------------------------------
id name c_macc c_rom c_id
------------------------------------------------------------------------------
0 conv2d_conv2d |||||||||||||||| 81.1% ||| 13.3% [0]
3 dense_dense |||| 18.1% |||||||||||||||| 85.0% [1]
5 dense_1_dense | 0.4% | 1.7% [2]
5 dense_1 | 0.4% | 0.0% [3]
- 첨부파일
- Accuracy.JPG 다운로드
로그인 후
참가 상태를 확인할 수 있습니다.