수행기록퀘스트1

STM32Cube.AI 개발 환경 구축 따라하기
2022. 8. 4 (목) 20:54 최종수정 2022. 8. 5 (금) 23:29 Tiel 조회 549 좋아요 0 스크랩 0 댓글 0

가이드대로 따라한 화면을 캡쳐해 보았습니다.

 

 

 

<분석 내용 복사>
Analyzing model 
C:/Users/USER/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/7.1.0/Utilities/windows/stm32ai analyze --name network -m D:/work/test/contest/4_cubeai/en.fp-ai-sensing1/STM32CubeFunctionPack_SENSING1_V4.0.3/Utilities/AI_Ressources/models/asc_93_Q.h5 --type keras --compression 1 --verbosity 1 --workspace C:\Users\USER\AppData\Local\Temp\mxAI_workspace23804064338050017264679071903012568 --output C:\Users\USER\.stm32cubemx\network_output  
Neural Network Tools for STM32AI v1.6.0 (STM.ai v7.1.0-RC3) 
  
 Exec/report summary (analyze) 
 ------------------------------------------------------------------------------------------------------------------------ 
 model file           : D:\work\test\contest\4_cubeai\en.fp-ai-sensing1\STM32CubeFunctionPack_SENSING1_V4.0.3\Utilities\AI_Ressources\models\asc_93_Q.h5 
 type                 : keras 
 c_name               : network 
 compression          : None 
 workspace dir        : C:\Users\USER\AppData\Local\Temp\mxAI_workspace23804064338050017264679071903012568 
 output dir           : C:\Users\USER\.stm32cubemx\network_output 
 model_name           : asc_93_Q 
 model_hash           : 70ee217758c82a261fc1ed12413ca77d 
 input 1/1            : 'quantize_conv2d_11_input' 
                        960 items, 3.75 KiB, ai_float, float, (1,30,32,1), domain:user/ 
 output 1/1           : 'softmax_10' 
                        3 items, 12 B, ai_float, float, (1,1,1,3), domain:user/ 
 params #             : 7,703 items (30.09 KiB) 
 macc                 : 517,373 
 weights (ro)         : 30,812 B (30.09 KiB) (1 segment) 
 activations (rw)     : 17,280 B (16.88 KiB) (1 segment) 
 ram (total)          : 21,132 B (20.64 KiB) = 17,280 + 3,840 + 12 
  
 Model name - asc_93_Q ['quantize_conv2d_11_input'] ['softmax_10'] 
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 id   layer (type)                         oshape            param/size     macc      connected to                |   c_size   c_macc             c_type                
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 0    quantize_conv2d_11_input (Input)     (None,30,32,1)                                                         |                               
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 1    quantize_conv2d_11_conv2d (Conv2D)   (None,28,30,16)   160/640        120,976   quantize_conv2d_11_input    |            +26,880(+22.2%)    optimized_conv2d()[0] 
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2    quantize_1 (Nonlinearity)            (None,28,30,16)                  13,440    quantize_conv2d_11_conv2d   |            -13,440(-100.0%)   
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 3    quantize_max_pooling2d_11 (Pool)     (None,14,15,16)                  13,440    quantize_1                  |            -13,440(-100.0%)   
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 5    quantize_conv2d_12_conv2d (Conv2D)   (None,12,13,16)   2,320/9,280    359,440   quantize_max_pooling2d_11   |            +4,800(+1.3%)      optimized_conv2d()[1] 
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 6    quantize_4 (Nonlinearity)            (None,12,13,16)                  2,496     quantize_conv2d_12_conv2d   |            -2,496(-100.0%)    
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 7    quantize_max_pooling2d_12 (Pool)     (None,6,6,16)                    2,304     quantize_4                  |            -2,304(-100.0%)    
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 9    flatten_6 (Reshape)                  (None,1,1,576)                             quantize_max_pooling2d_12   |                               
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 10   quantize_dense_11_dense (Dense)      (None,1,1,9)      5,193/20,772   5,193     flatten_6                   |                               dense()[2]            
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 11   quantize_8 (Nonlinearity)            (None,1,1,9)                     9         quantize_dense_11_dense     |                               nl()[3]               
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 13   quantize_dense_12_dense (Dense)      (None,1,1,3)      30/120         30        quantize_8                  |                               dense()[4]            
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 14   softmax_10 (Nonlinearity)            (None,1,1,3)                     45        quantize_dense_12_dense     |                               nl()/o[5]             
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 model/c-model: macc=517,373/517,373  weights=30,812/30,812  activations=--/17,280 io=--/3,852 
  
 Complexity report per layer - macc=517,373 weights=30,812 act=17,280 ram_io=3,852 
 ------------------------------------------------------------------------------------------ 
 id   name                        c_macc                    c_rom                     c_id 
 ------------------------------------------------------------------------------------------ 
 1    quantize_conv2d_11_conv2d   |||||||           28.6%   |                  2.1%   [0]  
 5    quantize_conv2d_12_conv2d   ||||||||||||||||  70.4%   |||||||           30.1%   [1]  
 10   quantize_dense_11_dense     |                  1.0%   ||||||||||||||||  67.4%   [2]  
 11   quantize_8                  |                  0.0%   |                  0.0%   [3]  
 13   quantize_dense_12_dense     |                  0.0%   |                  0.4%   [4]  
 14   softmax_10                  |                  0.0%   |                  0.0%   [5] 
Creating txt report file C:\Users\USER\.stm32cubemx\network_output\network_analyze_report.txt 
elapsed time (analyze): 0.506s 
Analyze complete on AI model

 

network graph 그림 캡쳐

위 그래프 전체 그림

이상입니다.

-Tiel-

첨부파일
network_analyze_report.txt 다운로드

로그인 후
참가 상태를 확인할 수 있습니다.