수행기록퀘스트1
본분 내용에 그림으로 넣고 첨부파일에 압축 첨부 합니다.
Neural Network Tools for STM32AI v1.6.0 (STM.ai v7.1.0-RC3)
Created date : 2022-08-01 16:00:34
Parameters : analyze --name network -m C:/Users/DR211229001/STM32Cube/Repository/Packs/STMicroelectronics/STM32CubeFunctionPack_SENSING1_V4.0.3/Utilities/AI_Ressources/models/cnn_gmp.h5 --type keras --compression 1 --verbosity 1 --workspace C:\Users\DR2112~1\AppData\Local\Temp\mxAI_workspace52109035648420008140532139645537130 --output C:\Users\DR211229001\.stm32cubemx\network_output
Exec/report summary (analyze)
------------------------------------------------------------------------------------------------------------------------
model file : C:\Users\DR211229001\STM32Cube\Repository\Packs\STMicroelectronics\STM32CubeFunctionPack_SENSING1_V4.0.3\Utilities\AI_Ressources\models\cnn_gmp.h5
type : keras
c_name : network
compression : None
workspace dir : C:\Users\DR2112~1\AppData\Local\Temp\mxAI_workspace52109035648420008140532139645537130
output dir : C:\Users\DR211229001\.stm32cubemx\network_output
model_name : cnn_gmp
model_hash : 954164d0a35496bd293bb6b3429c6a79
input 1/1 : 'input_0'
72 items, 288 B, ai_float, float, (1,24,3,1), domain:user/
output 1/1 : 'softmax_1'
5 items, 20 B, ai_float, float, (1,1,1,5), domain:user/
params # : 1,477 items (5.77 KiB)
macc : 68,928
weights (ro) : 5,908 B (5.77 KiB) (1 segment)
activations (rw) : 6,976 B (6.81 KiB) (1 segment)
ram (total) : 7,284 B (7.11 KiB) = 6,976 + 288 + 20
Model name - cnn_gmp ['input_0'] ['softmax_1']
-------------------------------------------------------------------------------------------------------------------------------------------------
id layer (type) oshape param/size macc connected to | c_size c_macc c_type
-------------------------------------------------------------------------------------------------------------------------------------------------
0 input_0 (Input) (None,24,3,1) |
quantize_1_conv2d (Conv2D) (None,20,3,16) 96/384 4,816 input_0 | +960(+19.9%) conv2d()[0]
quantize_1 (Nonlinearity) (None,20,3,16) 960 quantize_1_conv2d | -960(-100.0%)
-------------------------------------------------------------------------------------------------------------------------------------------------
1 quantize_2_conv2d (Conv2D) (None,16,3,16) 1,296/5,184 61,456 quantize_1 | +1,536(+2.5%) optimized_conv2d()[1]
quantize_2 (Nonlinearity) (None,16,3,16) 768 quantize_2_conv2d | -768(-100.0%)
-------------------------------------------------------------------------------------------------------------------------------------------------
2 quantize_3 (Pool) (None,1,1,16) 768 quantize_2 | -768(-100.0%)
-------------------------------------------------------------------------------------------------------------------------------------------------
3 quantize_4_dense (Dense) (None,1,1,5) 85/340 85 quantize_3 | dense()[2]
-------------------------------------------------------------------------------------------------------------------------------------------------
4 softmax_1 (Nonlinearity) (None,1,1,5) 75 quantize_4_dense | nl()/o[3]
-------------------------------------------------------------------------------------------------------------------------------------------------
model/c-model: macc=68,928/68,928 weights=5,908/5,908 activations=--/6,976 io=--/308
Generated C-graph summary
------------------------------------------------------------------------------------------------------------------------
model name : cnn_gmp
c-name : network
c-node # : 4
c-array # : 12
activations size : 6976 (1 segments)
weights size : 5908 (1 segments)
macc : 68928
inputs : ['input_0_output']
outputs : ['softmax_1_output']
C-Arrays (12)
--------------------------------------------------------------------------------------------------------
c_id name (*_array) item/size domain/mem-pool c-type fmt comment
--------------------------------------------------------------------------------------------------------
0 input_0_output 72/288 user/ float float /input
1 quantize_1_conv2d_output 960/3840 activations/**default** float float
2 quantize_2_conv2d_output 16/64 activations/**default** float float
3 quantize_4_dense_output 5/20 activations/**default** float float
4 softmax_1_output 5/20 user/ float float /output
5 quantize_1_conv2d_weights 80/320 weights/ const float float
6 quantize_1_conv2d_bias 16/64 weights/ const float float
7 quantize_2_conv2d_weights 1280/5120 weights/ const float float
8 quantize_2_conv2d_bias 16/64 weights/ const float float
9 quantize_4_dense_weights 80/320 weights/ const float float
10 quantize_4_dense_bias 5/20 weights/ const float float
11 quantize_2_conv2d_scratch0 768/3072 activations/**default** float float
--------------------------------------------------------------------------------------------------------
C-Layers (4)
-------------------------------------------------------------------------------------------------------------------
c_id name (*_layer) id layer_type macc rom tensors shape (array id)
-------------------------------------------------------------------------------------------------------------------
0 quantize_1_conv2d 0 conv2d 5776 384 I: input_0_output (1,24,3,1) (0)
W: quantize_1_conv2d_weights (1,16,5,1) (5)
W: quantize_1_conv2d_bias (1,1,1,16) (6)
O: quantize_1_conv2d_output (1,20,3,16) (1)
-------------------------------------------------------------------------------------------------------------------
1 quantize_2_conv2d 2 optimized_conv2d 62992 5184 I: quantize_1_conv2d_output (1,20,3,16) (1)
S: quantize_2_conv2d_scratch0
W: quantize_2_conv2d_weights (16,16,5,1) (7)
W: quantize_2_conv2d_bias (1,1,1,16) (8)
O: quantize_2_conv2d_output (1,1,1,16) (2)
-------------------------------------------------------------------------------------------------------------------
2 quantize_4_dense 3 dense 85 340 I: quantize_2_conv2d_output (1,1,1,16) (2)
W: quantize_4_dense_weights (16,1,1,5) (9)
W: quantize_4_dense_bias (1,1,1,5) (10)
O: quantize_4_dense_output (1,1,1,5) (3)
-------------------------------------------------------------------------------------------------------------------
3 softmax_1 4 nl 75 0 I: quantize_4_dense_output (1,1,1,5) (3)
O: softmax_1_output (1,1,1,5) (4)
-------------------------------------------------------------------------------------------------------------------
Complexity report per layer - macc=68,928 weights=5,908 act=6,976 ram_io=308
----------------------------------------------------------------------------------
id name c_macc c_rom c_id
----------------------------------------------------------------------------------
0 quantize_1_conv2d || 8.4% || 6.5% [0]
1 quantize_2_conv2d |||||||||||||||| 91.4% |||||||||||||||| 87.7% [1]
3 quantize_4_dense | 0.1% | 5.8% [2]
4 softmax_1 | 0.1% | 0.0% [3]
- 첨부파일
- STM32 퀘스트 챌린지 -1.zip 다운로드
로그인 후
참가 상태를 확인할 수 있습니다.